PROGRESS: Progressive Reinforcement-Learning-Based Surrogate Selection
نویسندگان
چکیده
In most engineering problems, experiments for evaluating the performance of different setups are time consuming, expensive, or even both. Therefore, sequential experimental designs have become an indispensable technique for optimizing the objective functions of these problems. In this context, most of the problems can be considered as a black-box. Specifically, no function properties are known a priori to select best suited surrogate model class. Therefore, we propose a new ensemble-based approach which is capable of identifying the best surrogate model during the optimization process by using reinforcement learning techniques. The procedure is general and can be applied to arbitrary ensembles of surrogate models. Results are provided on 24 well-known black-box functions to show that the progressive procedure is capable of selecting suitable models from the ensemble and that it can compete with state-of-the-art methods for sequential optimization.
منابع مشابه
Deep Reinforcement Learning with Surrogate Agent-Environment Interface
In this paper we propose surrogate agent-environment interface (SAEI) in reinforcement learning. We also state that learning based on probability surrogate agent-environment interface gives optimal policy of task agent-environment interface. We introduce surrogate probability action and develope the probability surrogate action deterministic policy gradient (PSADPG) algorithm based on SAEI. Thi...
متن کاملRRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملSurprise-Based Intrinsic Motivation for Deep Reinforcement Learning
Exploration in complex domains is a key challenge in reinforcement learning, especially for tasks with very sparse rewards. Recent successes in deep reinforcement learning have been achieved mostly using simple heuristic exploration strategies such as -greedy action selection or Gaussian control noise, but there are many tasks where these methods are insufficient to make any learning progress. ...
متن کاملPreference-based Reinforcement Learning
This paper investigates the problem of policy search based on the only expert’s preferences. Whereas reinforcement learning classically relies on a reward function, or exploits the expert’s demonstrations, preference-based policy learning (PPL) iteratively builds and optimizes a policy return estimate as follows: The learning agent demonstrates a few policies, is informed of the expert’s prefer...
متن کاملExperiences of Commissioning Mothers in Selection of Surrogate Mother
Background: The practice of surrogacy is one of the most controversial procedures in infertility treatment. Despite increasing of using this technology in Iran, there are few practical data about surrogacy.There isn't any study assessing experiences of commissioning mothers about surrogate mother selection. Aim: The purpose of this study was exploring of commissioning mothers' experiences in se...
متن کامل